El microbioma heredado define la salud o la enfermedad


La alimentación de los padres contribuye a la salud de los hijos.

El equilibrio del holobionte humano (el superorganismo formado por organismo hospedero y microorganismos que conviven con él) radica en la completa integración física y metabólica entre los organismos que lo conforman. El estado de salud está definido por la acción del microbioma asociado al ser humano, que participa en la regulación del sistema inmunológico, en la nutrición, en la regulación hormonal, en el correcto funcionamiento del eje cerebro-intestino y en el mantenimiento de la homeostasis de todo el sistema.

microbioma y salud

La pérdida de parte del microbioma a lo largo de la evolución humana, nos ha dejado con un sistema inmune hiperreactivo que ha incrementado la incidencia de enfermedades relacionadas al sistema inmune y a la respuesta inflamatoria. Entre estas enfermedades tiene central atención, las enfermedades inflamatorias intestinales y las alergias, así como también la obesidad y el síndrome metabólico.

Este desequilibrio, y estas enfermedades, suelen tener características en común. La alteración del microbioma normal y una alteración de los niveles de citoquinas y marcadores pro-inflamatorios.

Pero la pregunta central desde hace un tiempo ha sido si el desbalance inmune era un síndrome heredado que provocaba un cambio en el microbioma una vez avanzada determinada enfermedad o si el microbioma alterado provocaba una respuesta inmune exacerbada.

Un reciente trabajo (Agosto 2013) echa luz sobre este aspecto y además refuerza el carácter evolutivo fundamental de la epigenética y la herencia de caracteres adquiridos.

El trabajo de Myles y col. publicado en Journal of Inmunology comienza planteando que  las tasas de enfermedades autoinmunes se han incrementado dramáticamente en la población nacida desde finales de 1980 cuyos padres fueron de los primeros expuestos a dietas con exceso de grasas saturadas y altas calorías. La hipótesis del trabajo es que la exposición a dietas altas en grasa durante la gestación y el desarrollo perinatal temprano podría afectar la respuesta inmune en el futuro.

Exponen un grupo de ratones a dietas altas en grasas y otro grupo a dieta normal. Luego cada grupo es colocado en jaulas de apareamiento. Las crías reciben entonces distintos tratamientos. Algunas continúan con la misma dieta que los padres luego del destete, mientras que otros grupos de crías reciben dietas intercambiadas respecto de sus padres. Se evalúa distintos parámetros y se realizan distintos desafíos para cada grupo que se resumen en la siguiente figura (click para ampliar). En la misma, mayor tamaño de fuente indica mayor intensidad o número de ese parámetro.

myles 2013

Los ratones cuyos padres habían ingerido dieta rica en grasas saturadas (western diet) tuvieron mayor alteración del sistema inmunológico, mayor mortalidad ante infección con E. coli y mayor reactividad inflamatoria local y sistémica. En tanto que aquellas crias cuyos padres recibieron dieta normal presentaron efectos menos intensos. La alteración se debe a herencia epigenética (metilación de histonas asociadas a genes de TLR-2 y LBP) y a la herencia adquirida de un microbioma alterado.

El microbioma heredado “decide” la mayor propensión a enfermedades inflamatorias. Al poner en una misma jaula a crías que provenían de los distintos tratamientos, los efectos heredados se atenúan, reduciéndose en el grupo más reactivo la mortalidad y los efectos inflamatorios, aunque el microbioma resultante es diferente a aquél que presentaba cada grupo por separado.

El trabajo, entre otras cosas, concluye:

myles 2013_2

Hasta aqui el trabajo presentado.

Este trabajo es una evidencia más del carácter fundamental del mecanismo integrativo a lo largo de la evolución. Este organismo integrado (el organismo humano y su microbioma) es un factor heredado, más allá de los genes que determina la existencia y el funcionamiento de todo el sistema. Cambios en la vida de la madre provocan efectos heredables. Caracteres adquiridos son heredados y estos contribuyen dramáticamente a la vida de la progenie. Los genes responden a estos cambios ambientales (el organismo y su milieu, lamarckiano) y son definidos por los cambios ambientales, no como entidades discretas sino como una red compleja conformada por todas las moléculas implicadas que definirán el fenotipo final. En ello la herencia (los genes) será modificada, de acuerdo a innumerables efectos ambientales, por “decisiones” epigenéticas.

La evolución, proceso intrínseco a la vida, debe ser explicada teniendo en cuenta estas contundentes evidencias científicas.

Emiliano Salvucci

Fuente:

Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK. Parental dietary fat intake alters offspring microbiome and immunity. J Immunol. 2013 Sep 15;191(6):3200-9. doi: 10.4049/jimmunol.1301057. Epub 2013 Aug 9. (PubMed) (J. Immunol.)

Advertisements

THE HOLOBIONT AND THE BIOME DEPLETION THEORY


This text  is part of a book chapter:
Salvucci.2013. Crohn´s Disease within the Hologenome Paradigm, in “Crohn’s Disease: Classification, Diagnosis and Treatment Options”, Nova Publishers, 2013 (you can find the complete book here)

In 1990, Dr Erika von Mutius compared the rate of allergies in children of Democratic Germany and Federal Germany and she found that, contrary to their initial hypothesis, poor children with low sanitary conditions and rural life had fewer incidences of allergies. By those times, Dr Stachman who was working with hay fever, postulated that a previos viral infection in children could result in higher risk to develop allergies, but the results he found rejected this hypothesis. Population groups that have either been vaccinated or infected with mycobacteria (Bacillus Calmette-Guerin (BCG)) have shown to an association with a reduced risk to develop allergic disorders (Strachan, 1989). Recently, more works support the hypothesis of exposition to mild infections reduces the incidence of atopic diseases.

These researches lead to postulate the Hygiene hypothesis also called the “old friends hypothesis” that considers that the interaction in early life with different microorganisms (Bacteria, Virus, Eukarya) results in a less risk to develop allergies and atopic diseases.

Either by cell number or by genome size the microbiota outnumbers their host. The hologenome theory coined by Zilberg-Rosenberg and Rosenberg (2008) considers that the host and their microbiome constitute a unity, the holobiont. This superorganism is a result of cohabitation of different organism integrated as one, and could be considered a result of symbiopoiesis, or codevelopment of the host and symbiont (Rosenberg and Zilber-Rosenberg, 2011; Gilbert et al. 2010; Rohwer et al., 2002; Margulis and Foster, 1991).  The genetic contribution of the microbiome is more than 100000 genes that provide numerous trials not encoded in our genome (Dumas, 2011).

This evolutionary approach that considers any organism a result of integration with microorganisms has many implications and it is related to the Bioma Depletion Theory (a kind of enlargement of the “hygiene hypothesis”) that considers that human (and all mammals) and their microbiome evolved as a “superorganism” (Kinross et al., 2008; Rook, 2009). The immune system can be seen as an interface with their symbiotic organisms that have co-evolved more than a defense against invading organisms. The widely appreciated medical care in combination with technology, increased the occurence of allergic disorders, autoimmune diseases and left us an over-reactive immune response caused by a loss and separation of our partners, our microbiome that normally interact with our immune system (Figure 1) (Kau et al., 2011; Garn and Renz, 2007).

These partners involve not only the commensal bacteria, but also metazoans “parasites” and millions of virus. Bacteria comprising the microbiome have mobile elements that include plasmids, transposons, integrons, bacteriophages (Jones, 2010) that constitute the mobilome (Siefert, 2009). This genetic pool and the horizontal gene transfer within the microbiome is a key factor of the microbiome activity and constitute the dynamic response to the environment leading to the adaptation of the holobiont. It fuels the adaptive potential of the whole holobiont (Figure 1). The metabolism of microbiome and the host are intertwined constituting an integrated organism. In multicellular eukaryotes, transposition, genome reorganizations, retrovirus extrusion or insertion, etc. must be taking place in the germ line to result in a structural or metabolic change. Somatic cells have an intragenomic dynamics in response to environmental conditions.

me cago en wordpress

Figure 1. The superorganism or holobiont is the result of integration of pre-existing systems: Mobile elements or “mobilome” respond to the environmental factors with dynamic movement between genomes that constitutes a key mechanism for metabolic and structural changes on microbiome. The metabolism of microbiome and the host are intertwined constituting an integrated organism (holobiont). The medical care, use of antibiotics, technology and western way of life, resulted in a change and lost of our microbiome and an increased occurence of autoimmune and metabolic diseases that are related with an immune disbalance (Modified from Salvucci, 2011).

Vannier-Santos and Lenzi (2011) explain that taking into account that organisms identified as “parasites” are almost the 80% of known species and considering that all the theoretical explanation obtained are based on just a little part of the total organisms that exist (Windsor, 1998), we can refer to parasites as cohabitants since this close interaction drives the evolution and existence of the organisms (Vannier-Santos and Lenzi, 2011). Microbes and helmints that normally are understood as parasites have cohabited with their host and they are even greater than the host. If nature is a continuous battle bacteria and parasites should have won a long time ago. Considering that Life exists as a net, as a process (Maturana and Varela, 1999) it is possible to say that no organisms are a free-living specie sensu stricto.

The host and its symbiotic microbiota acts in cooperation (thus cooperation becomes a priority instead of competition). Even when Zilber-Rosenberg and Rosenberg, 2008 suggests that it should be considered a unit of selection in evolution and they remarks that the theory is in agreement with darwinism, the hologenome theory represent a holistic approach that considers each specie or organism as a result of an integration and this mechanism is observed at every level of nature: insertional activities of virus, bacterial, viral and archaeal DNA in eukaryotic genomes, endosymbiotic relationships and holobionts. This paradigm (like symbiogenesis of Merenchovzky and Margulis) contrasts with the observable facts in nature against the individualistic, selfish and economist conception of darwinism.

The hologenome theory and the holistic approaches like the concept of autopoiesis coined by Maturana and Varela (Varela et al., 1974) and Lynn Margulis` endosymbiotic theory (Margulis and Fester, 1991) are related in understanding the evolution of life as integrative processes.  The concept of autopoiesis considers a living system as a dynamic composite entity, a unity as a closed network of productions of components in a way that through interactions in composition and decomposition, the components: a) recursively constituted the same network of production that produced them, and b) specify the extension of the network and constitute operational boundaries that separate it as a dynamic unity in a space defined by elements of the kind of those that compose it (Maturana, 2002). The word autopoiesis connotes the organization of living systems as closed networks of molecular production. The endosymbiotic theory explains the emergence of organelles and nucleus of eukariotyc cells. These theoric frameworks and the hologenome theory explains that the existence of each organism is the consequence of integration of pre-existing organisms (or parts), but the result is more than the sum of the parts. Any organism is the result of an inherent property of autoorgnanization and autopiesis. The genome of each organism is the result of combination of bacterial, virus and eukaryotic DNA. Finally, any organism is the result of the interaction of their own genome with the genome of the organisms that co-evolved with it. In the case of mammals, the principal organism or “host” is the result of integration with their microbiota (constituting the holobiont), and their metabolisms were and are intertwined (as a “superorganism”) along evolution. (Vannier-Santos and Lenzi, 2011; Kau et al., 2009; Tilg and Kaser, 2011; Gazla and Carracedo, 2009; Zilber-Rosenberg and Rosenberg, 2008).

Microbial eukaryotes in the human gut have been studied primarily from a parasitological point of view and are generally considered to impact negatively on human health (Parfrey et al. 2011). Biome depletion theory could explain that these cohabitants were necessary to maintain the homeostasis of the superorganism or holobiont.

Nowadays, several diseases are considered the new epidemics. The incidence of a group of diseases have increased since the industrial era. These are related to a hyperreactive immune system and this unbalance is related to the separation of our partners along the last thousands years. The immune balance was maintained by the microbiota that humans have been losing with modern medicine, new technologies and changes in the way of life.

Autoimmune diseases like type 1 diabetes, artritis, lupus and inflammatory related diseases like infflamatory bowel disease (IBD), diabetes, asthma could be treated with a biome restoring process that could be done by probiotic administration. The genetic background necessary to develop any of these illnesses (intrinsic factors) is directly and closely related and influenced by the metabolism of microbiota (extrinsic factors) (Tilg and Kaser, 2011; Proal et al., 2009).

The importance of Bacteria on health was recognized along the last twenty years. It was observed the healthy status of people from different regions in where there was a high intake of fermented products. The benefits of different foods, that were known for centuries, leaves to the discover of different bacterial strains, mainly, Lactic Acid Bacteria that were postulated, after many studies, as probiotics (Fujimura et al., 2010).

Probiotics are defined today as ‘live microorganisms which, when administered in adequate amounts, confer a beneficial health effect on the host’. They could be bacterial cells like lactic acid bacteria or eukaryotic microorganisms like helminths. A reductionist perspective leads to the study of different strains that could restore or specifically get a benefit. There are several studies related to determine the mechanism and products involved in the benefit that could be ensured by the action of one bacteria strain (Fujimura et al., 2010; Dominguez Bello and Blaser, 2008).

The study of probiotics, since their beginning and nowadays, is directed to use an  specific strain that restores one symptom or disease. The hologenome theory considers us as a superorganism, added it with the biome depletion theory show us that what it is unbalanced is the entire immune system and the reasons of the increase of incidence and the probable therapies, would be analyzed taking account that we need to restore a whole microbiome and not search an specific strain for each disease. Of course, this is impossible because we are now, without those lost partners, a different holobiont. But, what we can do is to change our reductionist and incomplete view and research to know and understand the complete microbiome in each health/disease situation. And with this, try to figure out which are the accurate therapies.

La importancia del microbioma intestinal


Actualmente, los conceptos de sano y normal son muy diferentes a lo que se entiende
para aquel primate que fuimos, dado que nuestro cuerpo opera fuera de los indicadores
fisiológicos que lo constituyeron y estructuraron a los largo de miles de años. Por ejemplo,
nuestro valor normal de 90 mg/dl promedio de glucosa en sangre es diferente al
50 mg/dl de nuestros parientes más cercanos (Behncke, 2004). Sumado a los cambios
en la dieta a lo largo del tiempo, debemos agregar que la industrialización trajo consigo
la proliferación de numerosos alimentos bastante diferentes a nuestra dieta primitiva.
La dieta principal de un primate silvestre, por ejemplo, es baja en calorías pero de óptima
nutrición (frutas y verduras, principalmente). En el caso del ser humano esta dieta
se ha ido modificando sustancialmente. La producción de alimentos a gran escala, el
control tecnológico, la producción de alimentos cada vez más artificiales, el incremento
del consumo de alimentos altos en azúcares, grasas y sodio, constituye lo que se llama
generalmente “una dieta occidental” y que se encuentra relacionada a la modificación
del microbioma y a diversos efectos sobre la salud (Behncke, 2004; Turnbaugh et al.,
2006; Musso et al., 2010).
En años recientes la comunidad científica ha comenzado a comprender la verdadera
dimensión evolutiva, estructural y funcional de los microorganismos asociados a un
hospedero primario, en particular, el hombre. Los cambios anteriormente mencionados
influyeron e influyen continuamente en el ecosistema microbiano asociado al ser humano
y su impacto en la salud y la emergencia de ciertas enfermedades es motivo de
investigación y debate.

LA IMPORTANCIA DEL MICROBIOMA

El cuerpo humano es el resultado de la integración de su estructura definida en su genoma
y de la convivencia con millones de microorganismos a lo largo de miles de años
de su historia evolutiva. Estos microorganismos asociados, constituyen el microbioma
humano (Lederberg y McCray, 2001). Si bien el concepto de microbioma surgió definiendo
al genoma colectivo de los microbios asociados a un hospedero (microbiota),
este término puede extenderse como sinónimo de la microbiota porque “bioma” se
refiere a los “ecosistemas” en ecología (Lederberg y McCray, 2001; Domínguez Bello y
Blaser, 2008).
El organismo humano es, entonces, una red compleja que presenta diez células microbianas
para cada célula humana. Particularmente, el microbioma intestinal constituye
una comunidad taxonómicamente compleja y ecológicamente dinámica e influye en el
desarrollo, la maduración y la regulación, la estimulación y la supresión del sistema
inmune (Mazmanian et al., 2005; Smits et al., 2005; Hattori y Taylor, 2009; Mai y
Draganov, 2009; Kau et al., 2011; Ohnmacht et al., 2011). Del conjunto de microorganismos,
se destacan cuatro phyla bacterianos: Firmicutes, Bacteroidetes, Actinobacteria
y Proteobacteria (Ley et al., 2008; Manichanh et al., 2011; Marchesi, 2011), además de
microorganismos eucarióticos como Sacharomyces, Pentatrichomonas y Entamoeba
(Wegener Parfrey et al., 2012). A esto debemos sumar los fagos y elementos genéticos
móviles que responden a cada cambio del medio ambiente, al participar en la transferencia
horizontal de genes como respuesta a factores ambientales (Jones, 2011). Todo
esto constituye un sistema complejo cuya totalidad supera la suma de las partes que
interactúan y se influyen recíprocamente en un metabolismo intrincado.
microbiomaEl sistema inmune asociado a mucosas incluye el 80 % de las células inmunes activas del
cuerpo. La mayoría de ellas están presentes en el sistema gastrointestinal interactuando
con antígenos de los alimentos y con este nuevo “órgano” que es el microbioma
(Tlaskalová-Hogenová H. et al., 2011). Las interacciones en este complejo sistema son
escasamente conocidas y foco de actuales investigaciones (Kinross et al., 2011). Se ha
demostrado que astronautas que reciben durante cierto tiempo una dieta irradiada y,
por lo tanto, libre de microorganismos, presentan alteraciones en su microbioma que
resultan en una alteración en su sistema inmunológico (Kau et al., 2011). Es conocido
además que animales gnotobióticos (libre de microorganismos) separados de su microbioma
asociado, no alcanzan el desarrollo completo de un intestino maduro y tienen
un sistema inmunológico muy poco desarrollado (Cebra, 1999). Estos animales son
utilizados como modelo metodológico para evaluar la evolución del microbioma, la
acción de alguna cepa bacteriana específica y las consecuencias de la asociación microbioma-
hospedero. El microbioma forma parte integral del sistema gastrointestinal,
puesto que un intestino maduro y el conjunto de todas sus funciones no se debe únicamente
al tejido del hospedero sino además del metabolismo del microbioma, que
interactúa y protege las superficies intestinales manteniendo la homeostasis (Tlaskalová-
Hogenová H. et al., 2011; Ohnmacht et al., 2011). La colonización de microorganismos
genera un incremento natural de los niveles de inmunoglobulinas, la producción de anticuerpos
específicos y cambios sustanciales en el medio de linfocitos asociados a mucosa
y poblaciones celulares, cambios en los patrones de migración e incremento en la
capacidad inmunológica sistémica. Además, participa en la maduración de los enterocitos
(Bry et al., 1994; Tlaskalová-Hogenová H. et al., 2011; Ohnmacht et al., 2011).
El microbioma humano ha definido en conjunto, no solo al sistema inmunológico con
el cual convive, sino que también forma parte integral de procesos fundamentales como
la producción de vitaminas, la digestión, la homeostasis energética, la integridad de la
barrera intestinal y la angiogénesis en el cuerpo humano (Domínguez Bello y Blaser,
2008; Kau et al., 2011; Rosenberg y Zilber-Rosenberg, 2011; Randolph-Gips y Srinivasan,
2012; Douglas-Escobar et al., 2013). El genoma humano carece de los genes que codifiquen
para enzimas requeridas para degradar polisacáridos vegetales que habitualmente
consumimos, ricos en carbohidratos conteniendo xilanos, pectinas y arabinosa.
Sin embargo, el microbioma provee esta capacidad porque realiza el metabolismo de
sacarosa, glucosa, galactosa, fructosa y manosa (Bäckhed et al., 2005; Gill et al., 2006).
La fermentación de las fibras y los glicanos requiere la cooperación y asociación de diversos
microorganismos (Gill et al., 2006). El microbioma realiza la conversión de butirato
a butiril-CoA, este ácido graso de cadena corta es la principal fuente de energía de los
colonocitos, cuyo desarrollo establece una barrera intestinal saludable (Topping et al.,
2001). Los análisis metagenómicos han demostrado, además, la participación del microbioma
en la síntesis esencial de aminoácidos y vitaminas (Gill et al., 2006).

La interpretación darwinista tradicional de la naturaleza, en la que cualquier organismo
es un individuo que lucha por su propia existencia y que analiza cada estructura, órgano,
sistema o molécula de acuerdo a las ventajas que pudo haber tenido respecto de otras
alternativas, deja de lado el hecho real de todo organismo, y por supuesto el ser humano,
en el que no se puede concebir como aislado, sino coevolucionando, coexistiendo, con un
conjunto de organismos y microoganismos que lo definieron evolutivamente (Sandín,
2002; Abdalla, 2006; Salvucci 2012a; Salvucci, 2012b) El enfoque tradicional reduccionista
pierde de vista el hecho de que su existencia es resultado de un complejo proceso
de integración y convivencia con los constituyentes del ecosistema que lo rodea, lo conforma
y define. Los humanos no evolucionaron como una sola especie, sino asociados con
un complejo microbioma en una suerte de “superorganismo” u holobionte (Rosenberg
y Zilber-Rosenberg, 2011). En la red de la vida, nuestra evolución como especie y la evolución
de nuestros microorganismos socios siempre han estado entrelazados.

El extracto corresponde a una parte del artículo “El agotamiento del bioma y sus consecuencias”. Salvucci, E. Acta Biol. Col. 18(1):31-42. Allí pueden encontrarse las referencias citadas en el texto.